QC 807.5 -U66 no.389

NOAA Technical Report ERL 389-SEL 38

A Division of the *aa* Indices Into Six Classes Based on the *Ap* Index, 1868–1976

Joseph A. Sutorik Cheryl M. Cruickshank

July 1977

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Environmental Research Laboratories NOAA Technical Report ERL 389-SEL 38

A Division of the *aa* Indices Into Six Classes Based on the *Ap* Index, 1868–1976

Joseph A. Sutorik Cheryl M. Cruickshank

Space Environment Laboratory Boulder, Colorado

July 1977

U.S. DEPARTMENT OF COMMERCE

Juanita Kreps, Secretary

National Oceanic and Atmospheric Administration Richard A. Frank, Administrator

77 0380

Environmental Research Laboratories Wilmot Hess, Director

n	
CONTRAL	
VOLOGI	
· · · · · · · · · · · · · · · · · · ·	
bro tota	
1161 020	
M.O.A.A.	
U.S. Dept. of Commerce	

Contents

F	age
Abstract	1
1. Introduction	1
2. Data Base	2
2.1 Derivation of Class Divisions2.2 Test of the Limiting Values	2 3
3. Background Review of Recurrent Geomagnetic Activity and Coronal Holes	4
4. The 109-Year Record: Analysis and Evaluation	5
5. Conclusion	8
6. Acknowledgments	8
7. References	9
Appendix. Data Base and Data Sources	10

A Division of the *aa* Indices Into Six Classes Based on the *Ap* Index, 1868–1976

Joseph A. Sutorik Cheryl M. Cruickshank

Abstract. By using contingency table evaluation, Mayaud's *aa* indices of 1868–1967 are converted into six classes based on the Ap index. Five of the divisions are for days when the geomagnetic Ap intensity was ≥ 15 . The published Ap values of 1968–1976 are also converted into these same class divisions. These data provide a 109-year history of the geomagnetic field for active- or storm-day conditions. An analysis of the 109-year record suggests that coronal holes have occurred in each of the last 10 solar cycles. Though coronal holes predominantly appear in the declining years of a solar cycle, they may appear throughout a cycle. In addition the study analyzes monthly, annual, and solar cycle distributions and predicts a course for solar cycle 21.

1. Introduction

Numerous magnetic indices (Bartels, 1957; Lincoln, 1967; Rostoker, 1972) have been developed through the years. However, the spatial and temporal response of the geomagnetic field (Russell, 1975; Svalgaard, 1975), as measured by a specific geomagnetic index, presents difficulties in defining an accurate and continuous history of solar and geomagnetic relationships. A linear function, such as the *Ap* index, provides a description of the daily state of geomagnetic activity. The *aa* indices (Mayaud, 1973) provide a scaled measurement of geomagnetic activity since 1868. By their singular (antipodal) nature, these indices are appropriate for statistical conversion based on the *Ap* index.

Values for Ap, the index of daily equivalent planetary amplitude (Bartels, 1957), are available back to 1932 in the International Association for Geomagnetism and Aeronomy (IAGA) bulletin series. The 'quasi-logarithmic 3-hour range K index (Bartels et al., 1939) and the equivalent range ak index (Table 1) are used to obtain the daily index Ak for portions of the data base. Both ak and Ak are linear measures; Ak, the index of equivalent daily amplitude for a single geomagnetic station, is the average of the sum of the eight daily ak values.

Table 1. Equivalent Range ak for Given K														
K	0	1	2	3	4	5	6	7	8	9				
ak	0	3	7	15	27	48	80	140	240	400				

The purpose of this study is to provide a simple numerical value to describe the average daily state of the geomagnetic field. A regression line obtained from a correlation of the aa and Ap indices will provide a daily value; however, it would be difficult to evaluate, since these values for Ap may range between 0 and nearly 300. For this reason, contingency table methodology is used to provide discrete levels or class divisions (see section 2.1). These divisions of the *aa* indices extend the concept of the more familiar Ap index from 1932 back to 1868. A value defining the average daily state of the geomagnetic field is made available, thus allowing analysis of monthly, annual, or solar cycle distribution and recurrent patterns (Mregions) for the past 10 solar cycles. The recurrent patterns are used to infer the time periods for the existence of coronal holes.

2. Data Base

To provide a suitable data base to be used as a criterion for correlation, 293 geomagnetic days were selected between 1937 and 1967. Selection was made within the following ordered guidelines:

- (1) Selection of data over several solar cycles to reduce chance bias due to any magnetic response that is characteristically inherent within a solar cycle (Abdel-Wahab and Goned, 1974).
- (2) Selection of a sufficient number of data points to provide a suitable distribution for the entire spectrum of geomagnetic response.
- (3) Selection within each solar cycle of a series of sequential days with varying degrees of geomagnetic disturbance. This selection was made to reduce bias due to diurnal response characteristics (Cage and Zawalik, 1972).
- (4) Selection of values throughout the year to reduce bias due to the "semiannual wave" (Chapman and Bartels, 1940; McIntosh, 1959; Bartels, 1963; Russell and McPherron, 1973, 1974).

Three daily magnetic indices are included for correlative evaluation. The first is the average value of the aa indices for the northern (N) and southern (S) antipodal stations. In the averaging process, all half values are rounded to the next higher integer; this index will be referred to as \overline{aa} . The second index is the Ap value. The third index is the Ak value obtained from Cheltenham," Maryland, through May 1956 and from Fredericksburg, Virginia, after November 1956. For the period 1937–1946, the Ak values for Cheltenham were obtained by averaging the eight ak values corresponding to the published K-index. Because of the proximity of Cheltenham and Fredericksburg, their values are used in the data base as one station and referred to as Afr. A list of the indices used for the data base and their sources constitute the Appendix.

2.1 Derivation of Class Divisions

By following the above guidelines for data base selection, a distribution is provided for correlative evaluation of the three selected magnetic indices. Computer-generated video displays showing the distribution for the intercomparison of these three indices are shown in

(c)

Figure 1. A "shotgun" pattern (distribution diverging from the source) is evident for all three comparisons. Least-squares curve fitting was accomplished by computer. The regression line equation derived for the $Ap-\overline{aa}$ indices was found to be

$Ap = 1.8 + 0.8 \overline{aa}$

with the index of determination = 0.917.

Because the regression line provides finite daily values difficult to analyze, its use was abandoned in favor of a contingency table evaluation. In a contingency table, the data are gridded into appropriate sets of boxes. The boundary values for one parameter are fixed, whereas the boundary values of the second parameter are derived to obtain the best-fit distribution for the two parameters. For example, in Figure 2 the first limiting value of 29 for aa is derived to produce zero occurrences in boxes B, C, ..., when $0 \le Ap < 15$. Similarly, the second limiting value of 50 for \overline{aa} is derived to produce zero occurrences in boxes C, D, ..., when $15 \le Ap < 30$. This method is used to derive the limiting values for the entire contingency table. Ideally, the number of occurrences should be in the set of boxes running diagonally across the contingency table. This is not possible for all divisions; therefore, some degree of compromise is necessary. In this paper, emphasis was placed on minimizing the number of occurrences below the set of diagonal boxes.

Figure 2 shows the distribution of the data base and the boundary values obtained when the Ap and \overline{aa} indices are compared. These boundary values will later be used to assign a class division for each geomagnetic day beginning in 1868 (see Table 2). Figures 3 and 4 show the distribution comparing Ap-Afr and $Afr-\overline{aa}$, respectively. The limiting values for the distribution between Afr and \overline{aa} were determined by the values obtained for the $Ap-\overline{aa}$ and the Ap-Afr contingency tables. Adams (1975) provides a detailed evaluation of the comparison of Ap and Afr. No further evaluation for a midlatitude station will be made in this paper.

In Figures 2, 3, and 4, the upper value in each box shows the number of occurrences within the designated limits of the two indices; the lower value is the ratio of the upper value to total occurrences for that column, expressed as a percentage.

				a	ā													
		А	В	С	D	E	F											
	а	36 69%	0	0	- 0	0	0											
	b	16 31%	43 57%	0.	0	0	0											
d	с	0	31 41%	35 58%	0	0	0											
A	d	0.	2 3%	25 42%	34 74%	2 5%	0											
	е	0	0	0	12 26%	36 92%	1 10%											
	f	0	0	0	0	1 3%	9 90%											
		where A: 0 ≤ B: 29 ≤ C: 50 ≤ D: 74 ≤ E: 118 ≤ F: 245 ≤	aa < 29 aa < 50 aa < 74 aa < 118 aa < 248 aa < 248 aa < 400	3	where 3π 30π A: $0 \le \overline{aa} < 29$ a: $0 \le Ap < 15 = class 0$ B: $29 \le \overline{aa} < 50$ b: $15 \le Ap < 30 = class 1$ C: $50 \le \overline{aa} < 74$ c: $30 \le Ap < 50 = class 2$ D: $74 \le \overline{aa} < 118$ d: $50 \le Ap < 100 = class 3$ E: $118 \le \overline{aa} < 245$ e: $100 \le Ap < 200 = class 4$ F: $245 \le \overline{aa} < 400$ f: $200 \le Ap < 400 = class 5$													

Figure 2. Contingency table for Ap and \overline{aa} indices.

2.2 Test of the Limiting Values

An independent sample was selected to determine the degree of confidence that could be obtained when the limiting values of the contingency table are applied to this sample for the different levels of activity. This sample is composed of the daily values of \overline{aa} and Ap for the period 1960 through 1967. Excluded from the sample are the days that were included in

m 11	0	0		T . 1 1	01	000	
lan	01	(-eomaon	Ptic	HIPIC	1266	111021	1011
THE	A dan a	Geomagn	C CIC	TTCIA	C1000	men	TOTT

Class	Ap Index	Definition
0 0	$0 \le Ap < 7$ 7 \le Ap < 15	Quiet, usually no K-indices > 2 Unsettled, usually no K-indices
1 2	$15 \le Ap < 30$ $30 \le Ap < 50$	Active, a few K-indices of 4 Minor Storm, K-indices mostly 4 & 5
	$Ap \ge 50$ Added by this study	Major Storm, some K-indices 6 or greater y:
3 4 5	$50 \le Ap < 100$ $100 \le Ap < 200$ $Ap \ge 200$	

				A	fr		
		А	В	С	D	E	F
	а	31 78%	5 7%	0	0	0	0
	b	9 22%	47 70%	3 5%	0	0	0
P	с	0	14 21%	49 69%	3 5%	0	0
A	d	0	1 2%	19 27%	41 73%	2 5%	0
	е	0	0	0	12 22%	36 88%	1 12%
	f	0	0	0	0	3 7%	7 88%
		where A: B: C: D: E: F: 20	$0 \le Afr$ $13 \le Afr$ $26 \le Afr$ $39 \le Afr$ $32 \le Afr$ $00 \le Afr$	< 13 < 26 < 39 < 82 < 200 < 400	a: b: c: d: e: 1 f: 2	$0 \leq Ap$ $15 \leq Ap$ $30 \leq Ap$ $50 \leq Ap$ $00 \leq Ap$	< 15 < 30 < 50 < 100 < 200 < 400

Figure 3. Contingency table for Ap and Afr indices.

В С D E F A 35 57% а 45 59% 5 8% b 25 33% 42 70% Afr 13 22% 36 78% d 6 13% 33 85% e 0 8 f 0 where $0 \leq \overline{aa} < 29$ $29 \leq \overline{aa} < 50$ $50 \leq \overline{aa} < 74$ $\begin{array}{l} 0 \leq Afr < 13 \\ 13 \leq Afr < 26 \\ 26 \leq Afr < 39 \\ 39 \leq Afr < 82 \\ 82 \leq Afr < 200 \\ \end{array}$ A: a: B: b: C: c: D: 74 ≤ **aa** < 118 d: 118 ≤**aa** < 245 E: e: F: 245 ≤ **aa** < 400 f: $200 \leq Afr < 400$

aa

Figure 4. Contingency table for Afr and \overline{aa} indices.

the data base. This test sample of 2,869 geomagnetic days includes the last 5 years of cycle 19 and the first 3 years of cycle 20.

Figure 5 shows the distribution of the test sample when the limiting values from the contingency table for $Ap-\overline{aa}$ are applied to the sample. The largest variation in the level of Ap activity for a given interval of \overline{aa} values was in the intermediate range where $50 \le \overline{aa} < 74$. In this range, 10% of the values fell below the level desired for comparison with the Ap index (Ap \geq 30). The original concept was to maintain a minimum number of occurrences below a specified class level in the transfer of the \overline{aa} indices into class divisions. As a result of this "worst case" obtained from the large test sample we estimate that at least a 90% confidence level has been established for the conversion of the \overline{aa} indices into a class division equal to or greater than the desired value. This numerical definition of the average daily state of the geomagnetic field provides a simple, homogeneous set of values for studying the occurrence and distribution of active- or stormdays for 109 years spanning 10 solar cycles.

3. Background Review of Recurrent Geomagnetic Activity and Coronal Holes

The cyclic nature of the Sun and of geophysical parameters has long been identified. Bartels (1932, 1934) identified the periodic recurrent patterns of the geomagnetic field (Mregions). Allen (1944) quite accurately defined the concepts currently believed to be the cause of recurrent geomagnetic activity:

Some properties of M-regions can be gathered by a study of the 27-day charts. Referring to the chart for 1923–1933 (*Terr. Mag.*, **37**, 1, 1932; **39**, 201, 1934), we see that the M-regions sometimes persist for a year or more, and that they frequently continue through periods of complete sunspot inactivity. It is evident that spots are not necessary to their existence. Another feature of some significance is that there are nearly always two or three M-regions on the Sun at a time, and the disappearance of an M-region often synchronizes with the appearance of another. This feature makes it probable that the M-region is not a small area coming into activity by some fortuitous

Figure 5. Distribution in the test sample of the $Ap-\overline{aa}$ indices based on the contingency table limiting values.

chance like a sunspot. It is more likely to be an emission coming continuously from practically the whole of the Sun's surface and constrained to move in streams by forces in the Sun's atmosphere. It would then be the continuity of these streams that cause the persistence and changes of the recurrent magnetic storms.

With the advent of the space age, the solarinterplanetary sector structure was defined (Wilcox, 1968). Continued scientific advances provided the magnificent photographs of solar, coronal holes. The relationship between coronal holes and attendant high-speed solar wind streams was discussed by Kreiger et al. (1973). Sheeley et al. (1976) provided a review of the interaction of coronal holes, high-speed wind streams, and the geomagnetic field for the 1973–1976 period.

In a 1971 study, 01' discusses the relationship he discovered between the recurrent geomagnetic activity during the declining branch of a solar cycle and the maximum relative sunspot number for the next solar cycle. This relationship shows that the maximum relative sunspot number of a solar cycle is directly related to the

Figure 6. Monthly distribution for (a) active conditions (class 1); (b) minor-storm conditions (class 2); and (c) major-storm conditions (\geq class 3) for the period 1868–1976.

intensity of the recurrent geomagnetic activity in the declining branch of the preceding cycle.

4. The 109-Year Record: Analysis and Evaluation

On the basis of the conversion values established by the contingency distribution table (Figure 2), Mayaud's (1973) measured antipodal values are divided into six classes, of which five define active- or storm-day conditions (Table 2). (The definition for the state of the geomagnetic field as related to the Ap value is stated in the International Ursigram and World Days Service [IUWDS] Circular Letter RWC-123, dated June 1, 1971.) Class divisions 3, 4, and 5 have been added to provide more information when $Ap \ge 50$ (major storms). To make the study current, Ap values for 1968-1976 were taken from the NOAA/EDS Solar-Geophysical Data report series and converted into the class division format. Daily class values for the period 1868–1976 are available in catalog format (Sutorik and Cruickshank, 1977).

Figure 7. Annual distribution of geomagnetically disturbed days for the period 1868–1976: active (class 1), minorstorm (class 2), and major-storm (≥ class 3) conditions. Curve of yearly means of sunspot-relative-numbers is shown for comparison.

A graphical summary of the distribution of the class divisions of geomagnetic activity is presented as Figure 6, which shows the monthly totals for active, minor-storm, and major-storm conditions. Of interest is the persistency of the seasonal effect for all three levels of geomagnetic activity. This is evidence for the "semiannual wave" phenomenon (see Section 2). However, analysis of the 109-year period shows this effect to be true for a long period, but it is not evident in each particular year.

Figure 7 shows the annual distribution for active, minor-storm, and major-storm conditions for the 1868–1976 period. The curve of the yearly means of sunspot-relative-numbers (Waldmeier, 1961) is added for comparison. Solar cycles 11, 13, 15, and 19 have a generally symmetrical pattern, whereas an asymmetrical pattern is exhibited by solar cycles 12, 14, 16, 17, 18, and 20. Except for cycle 18, these 10 solar cycles have exhibited alternating high-low relative sunspot maxima and, except for cycle 17, an alternating symmetrical-asymmetrical pattern in geomagnetic responses. The distribution depicted in Figure 7, however, does not describe the geomagnetic field response attributable to recurrent and nonrecurrent activity.

The interaction between the solar wind stream and Earth's geophysical environment is complex, and extensive research is currently in progress. If coronal holes are the main contributors to recurrent geomagnetic disturbances, then the classic M-regions provide a signature for the identification of the existence of past coronal holes. An analysis of the 109-year

period of class divisions for active- or stormdays (Sutorik and Cruickshank, 1977) identified 79 probable coronal holes. Three more were not included in the statistics because of doubtful signatures. Figure 8 shows the annual distribution of recurrent and nonrecurrent days based on these analyses. No attempt was made to remove obvious flare-related magnetically disturbed days from within an established recurrent pattern. For example, a class-5 event occurred on Bartels rotation 1705 in the midst of an assigned coronal hole structure. This depiction of the recurrent and nonrecurrent geomagnetic activity superbly illustrates the relationship discovered by Professor 01'. Even the consecutively increasing sunspot maxima for cycles 17, 18, and 19 obey the "01' Law." Dodson et al. (1974) provide a detailed review of cycles 18, 19, and 20.

In an asymmetric cycle, coronal holes dominate the geomagnetic activity during the declining branch of a solar cycle. But this portion of a solar cycle is not the exclusive domain of coronal holes. Coronal holes have existed throughout each of the past 10 cycles. The longest-lived coronal hole shown by recurrent geomagnetic disturbances existed for 30 Bartels rotations (Nos. 1766–1796) occurring in 1962– 1964. Very complex coronal hole structures would have existed during the following periods: 1929–1931 (Nos. 1320–1341), 1951– 1952 (Nos. 1616–1634), and 1973–1974 (Nos. 1916–1942). Coronal holes were assigned to a geomagnetically disturbed period in 1957–1958

(Nos. 1701–1709) during the sunspot maxima of solar cycle 19 (Figure 9). It is difficult to accept the hypothesis that a flare-rich Sun could produce the consistency and persistency of class 1 and 2 events exhibited during this time period.

											_		_	_			_				_						_	_	_	_	1		
BARTELS	1				5			1	1	0				1	5				2	0				2	5								
1686	1	0	3	2	0	0	ø	ø	3	1	Ø	ø	ø	0	Ø	0	ø	0	ø	Ø	1	1	1	ø	ø	0	ø	0	0	Ø	0	0	1
1687	0	Ø	0	0	Ø	1	1	0	0	1	1	0	0	0	0	0	0	0	ø	ø	ø	0	0	1	1	0	0	0	ø	2	1	ø	0
1688	0	0	2	1	Ø	Ø	Ø	ø	0	0	Ø	0	Ø	0	0	0	1	2	2	2	ø	2	3	2	1	ø	0	0	1	1	1	ø	2
1689	0	1	1	1	0	2	ø	0	Ø	0	ø	0	ø	ø	ø	0	ø	ø	ø	0	1	ø	ø	1	ø	0	0	ø	ø	ø	0	ø	ø
1690-57	ø	ø	ø	ø	ø	Ø	ø	Ø	1	ø	ø	2	ø	ø	0	0	1	Ø	Ø	0	Ø	0	1	Ø	2	0	0	Ø	0	0	0	0	ø
1691	ø	0	0	0	0	0	ø	ø	4	3	1	2	1	0	0	0	1	1	ø	ø	Ø	0	1	2	ø	0	ø	ø	Ø	0	0	2	0
1692	ø	0	0	0	2	ø	0	0	0	1	1	1	2	1	2	3	ø	0	Ø	ø	1	4	1	ø	1	ø	0	ø	Ø	3	ø	0	0
1693	ø	Ø	3	Ø	0	0	0	ø	2	0	ø	0	0	1	1	ø	0	1	ø	2	2	3	1	1	1	0	ø	1	1	1	0	ø	1
1694	1	1	1	Ø	ø	1	2	ø	0	0	0	0	ø	2	2	2	0	ø	0	ø	1	0	1	0	1	Ø	0	0	0	0	ø	0	0
1695-57	Ø	Ø	ø	ø	0	Ø	Ø	0	1	0	ø	ø	ø	0	ø	ø	Ø	0	Ø	ø	0	ø	0	Ø	0	1	0	Ø	0	1	0	0	ę
1696	Ø	0	1	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	1	0	1	1	1	Ø	0	0	ø	Ø	1	3	0	Ø	0
1697	0	1	3	0	0	0	4	2	2	1	0	2	1	0	ø	ø	0	Ø	ø	ø	0	Ø	0	0	0	1	ø	0	1	0	0	0	0
1698	0	1	ø	Ø	Ø	0	ø	Ø	Ø	Ø	ø	0	0	1	ø	0	2	Ø	0	0	Ø	0	1	2	0	0	ø	0	ø	0	0	ø	e
1699	Ø	0	Ø	Ø	Ø	0	0	ø	Ø	0	1	ø	1	1	1	1	3	4	4	3	1	Ø	Ø	Ø	0	Ø	0	4	2	0	ø	ø	Ø
1700-57	4	2	Ø	0	0	Ø	Ø	ø	3	4	4	1	1	0	ø	0	4	2	1	Ø	1	Ø	Ø	Ø	ø	0	01	1	1	0	1	2	e
1701	1	1	0	1	2	10	0	0	0	0	Ø	1	1	1	Ø	0	0	0	0	1	1	ø	0+	ø	0	0	0)	1	1	1	1	1	1
1702	1	1	1	1	1	1	1	0	1	1	10	0	1	Ø	0	0	0	Ø	Ø	2	3	2	i	0	Ø	6	1	1	0	1	1	1	0
1703	1	Ø	1	1	1	0	1	1	2	1	1) 0	1	0	(1	0	1	1	10	0	Ø	0	1	1	0	ø	0	1	3	1	1	ø	0
1704	1	3	1	1	50	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	(1	1	1	1	0	1	0	Ø	0	0	ø	0
1705-58	0	0	0	Ø	0	0	0	0	0	1	2	1	1	1	1	1	5	3	1	1	0	0	4	1	1	1	1	1	1	6	0	Ø	Ø
1706	1	1	0	0	0	0	0	0	0	1	1	2	2	1	0	1	1	1	2	2)0	1	0	4	1	2	1	2	1	1	1	1	1
1707	2	1	1	1	1	1	0	0	0	1	0	1	1	Ø	1	1	6	0	Ø	0	Ø	0	ø	0	1	1	1	2	2	1	10	0	0
1708	2	2	1	0	0	0	0	0	0	0	0	li	1	1	1	10	0	0	0	0	0	0	0	1	0	0	1	1	1	10	1	1	0
1709	1	1	0	1	1	0	0	0	0	0	0	0	1	1	,0	2	0	3	2 +	1	0	0	0	ø	2	0	1	1	10	0	0	0	1
								_	_							_	_	_	-	-	_	_	-	-	-	-	_	-	-	-	-	-	-

Figure 9. Recurrent patterns (coronal holes) during sunspot maxima in solar cycle 19 (from Sutorik and Cruickshank, 1977).

5. Conclusion

If the solar/geomagnetic characteristics exhibited through the last 10 solar cycles persist, the relationship shown by Professor 01' implies there will be a marked increase in the annual mean relative sunspot number maximum for cycle 21. Also, if the alternating nature of the solar cycles continues, cycle 21 will be dominated by nonrecurrent geomagnetic disturbances with the frequency of occurrences following the rise and fall of the relative sunspot number. This dominance by nonrecurrent (flare-induced) disturbances as projected by this paper will make long-range forecasting of specific geomagnetically disturbed days or periods extremely difficult.

6. Acknowledgments

We wish to express our appreciation to Thomas B. Gray, Space Environment Laboratory (SEL), for discussions on the techniques of statistical evaluation. We also wish to express our appreciation to personnel of Environmental Data Service (EDS) for their support in locating or providing geomagnetic data used in this paper. Our special indebtedness is extended to Dr. Helen Dodson-Prince and E. Ruth Hedeman of McMath-Hulbert Observatory for their germane discussions and comments on the contents of this paper.

7. References

- Abdel-Wahab, S. and A. Goned, 1974. Solar cycle dependence of periodic variations in geomagnetic *Kp*-index. *Planet. Space Sci.*, **22**:537.
- Adams, H. A., 1975. A comparison between Fredericksburg and planetary geomagnetic *A* values. NOAA Tech. Rept. ERL 350–SEL 36, 19 pp.
- Allen, C. W., 1944. Relation between magnetic storms and solar activity. Mon. Notic. Roy. Astron. Soc., 104:13.
- Bartels, J., 1932. Terrestrial magnetic activity and its relations to solar phenomena. *Terr. Magn. Atmos. Elec.*, **37**:1.
- Bartels, J., 1934. Twenty-seven day recurrences in terrestrial-magnetic and solar activity, 1923–1933. *Terr. Magn. Atmos. Elec.*, **39**:201.
- Bartels, J., N. H. Heck, and H. F. Johnston, 1939. The three-hour-range index measuring geomagnetic activity. *Terr. Magn. Atmos. Elec.*, 44:411.
- Bartels, J., 1957. The geomagnetic measures for the time-variations of solar corpuscular radiation described for use in correlation studies in other geophysical fields. *Annals of the International Geophysical Year*, Vol. IV, Pergamon Press, London, 10 pp.
- Bartels, J., 1963. Discussion of time-variations of geomagnetic activity indices *Kp* and *Ap*, 1932–1961. Ann. Geophys., **19**:1.
- Cage, A. L., and E. J. Zawalik, 1972. A discussion of the geomagnetic indices *Kp* and *Ap*, 1932 to 1971. AFCRL Environmental Research Papers, No. 423, 36 pp.
- Chapman, S., and J. Bartels, 1940. Geomagnetism, Vol. I, Chap. 11, Oxford University Press, London, 542 pp.
- Dodson, H. W., E. R. Hedeman, and D. C. Mohler, 1974. Comparison of activity in solar cycles 18, 19, and 20. *Rev. Geophys. Space Sci.*, **12**(3):329.
- Kreiger, A. S., A. F. Timothy, and E. C. Roelof, 1973. A coronal hole and its identification as the source of a high velocity solar wind stream. *Solar Phys.*, **29**:505.

- Lincoln, J. V., 1967. Geomagnetic indices. In: *Physics of Geomagnetic Phenomena*, Vol. I, ed. by S. Matsushita and W. H. Campbell, Academic Press, New York, 623 pp.
- Mayaud, P. N., 1973. A hundred-year series of geomagnetic data. *IAGA Bull.*, 33.
- McIntosh, D. H., 1959. On the annual variation of magnetic disturbance. *Phil. Trans. Roy. Soc. London, Ser. A*, **251**:525.
- 01', A. I., 1971. Physics of the 11-year variation of magnetic disturbances. *Geomagn. Aeron.*, 11:549.
- Rostoker, G., 1972. Geomagnetic indices. *Rev. Geophys. Space Phys.*, **10**(4):935.
- Russell, C. T., and R. L. McPherron, 1973. Semiannual variation of geomagnetic activity. J. Geophys. Res., 78:92.
- Russell, C. T., and R. L. McPherron, 1974. Reply to comment on "Semiannual variation of geomagnetic activity." *J. Geophys. Res.*, **79**:1132.
- Russell, C. T., 1975. On the possibility of deducing interplanetary and solar parameters from geomagnetic records. *Solar Phys.*, **42**: 259.
- Sheeley, N. R., Jr., J. W. Harvey, and W. C. Feldman, 1976. Coronal holes, solar wind streams, and recurrent geomagnetic disturbances: 1973–1976. Solar Phys., 49: 271.
- Sutorik, J. A., and C. M. Cruickshank, 1977. Catalog of geomagnetic activity based on six class divisions, 1868–1976. NOAA Tech. Memo. ERL SEL–47.
- Svalgaard, L., 1975. On the causes of geomagnetic activity. Stanford University, Institute for Plasma Research Report No. 646.
- Waldmeier, M., 1961. The sunspot-activity in the years 1610–1960. Zurich Schulthess, Zurich, Switzerland, 171 pp.
- Wilcox, J. M., 1968. The interplanetary magnetic field, solar origin and terrestrial effects. *Space Sci. Rev.*, 8(2):258.

Appendix: Data Base and Data Sources

Data Base

Date	āa	Ap	Afr	Date	aa	Ар	Afr
Date 21 Apr 37 22 Apr 37 23 Apr 37 24 Apr 37 25 Apr 37 25 Apr 37 26 Apr 37 27 Apr 37 29 Apr 37 29 Apr 37 30 Apr 37 01 Oct 37 02 Oct 37 03 Oct 37 04 Oct 37 05 Oct 37 05 Oct 37 06 Oct 37 10 Oct 37 10 Oct 37 11 Oct 37 12 Oct 37 13 Oct 37 14 Oct 37 12 Jan 38 13 Jan 38 14 Jan 38 14 Jan 38 15 Jan 38 20 Jan 38 21 Jan 38 22 Jan 38 23 Jan 38 24 Jan 38 25 Jan 38 26 Jan 38 27 Jan 38 27 Jan 38 28 Apr 37 29 Apr 37 20 Jan 38 21 Jan 38 22 Jan 38 23 Jan 38 24 Jan 38 25 Jan 38 26 Jan 38 27 Jan 38 27 Jan 38 28 Apr 38 29 Jan 38 20 Jan 38 21 Jan 38 22 Jan 38 23 Jan 38 24 Jan 38 25 Jan 38 26 Jan 38 27 Jan 38 27 Jan 38 28 Apr 38 29 Apr 37 38 38 38 38 38 38 38 38 38 38	$\begin{array}{c} \overline{aa} \\ 21 \\ 8 \\ 12 \\ 52 \\ 69 \\ 90 \\ 55 \\ 135 \\ 32 \\ 29 \\ 40 \\ 9 \\ 33 \\ 61 \\ 16 \\ 17 \\ 34 \\ 47 \\ 54 \\ 61 \\ 55 \\ 43 \\ 21 \\ 18 \\ 36 \\ 30 \\ 40 \\ 14 \\ 22 \\ 58 \\ 139 \\ 46 \\ 36 \\ 40 \\ 63 \\ 240 \\ 25 \\ 37 \\ 189 \\ 82 \\ 23 \\ 27 \\ 21 \\ 33 \\ 28 \\ 17 \\ 67 \\ 41 \\ 56 \\ 54 \\ 43 \\ 37 \\ 19 \\ 25 \\ 54 \\ 120 \\ 81 \\ 14 \\ 55 \\ 55 \\ 51 \\ 71 \\ 75 \\ 840 \\ 62 \\ 28 \\ 47 \\ \end{array}$	$\begin{array}{c} Ap\\ \\ 12\\ 4\\ 6\\ 45\\ 72\\ 67\\ 61\\ 130\\ 19\\ 21\\ 29\\ 7\\ 25\\ 71\\ 8\\ 10\\ 23\\ 38\\ 42\\ 38\\ 46\\ 30\\ 14\\ 13\\ 20\\ 15\\ 29\\ 9\\ 9\\ 34\\ 120\\ 34\\ 424\\ 25\\ 38\\ 130\\ 16\\ 16\\ 105\\ 62\\ 12\\ 13\\ 13\\ 16\\ 16\\ 105\\ 62\\ 12\\ 13\\ 13\\ 16\\ 13\\ 9\\ 51\\ 24\\ 36\\ 32\\ 31\\ 27\\ 10\\ 16\\ 39\\ 51\\ 24\\ 36\\ 32\\ 31\\ 27\\ 10\\ 16\\ 39\\ 51\\ 24\\ 36\\ 32\\ 31\\ 27\\ 10\\ 16\\ 39\\ 105\\ 76\\ 71\\ 10\\ 16\\ 39\\ 105\\ 76\\ 71\\ 10\\ 38\\ 30\\ 56\\ 16\\ 32\\ 32\\ 30\\ 56\\ 16\\ 32\\ 32\\ 30\\ 56\\ 16\\ 32\\ 32\\ 30\\ 56\\ 16\\ 32\\ 32\\ 30\\ 56\\ 16\\ 32\\ 32\\ 30\\ 56\\ 16\\ 32\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	Afr 15 4 6 47 47 61 53 106 11 13 23 7 20 69 5 11 19 42 32 28 45 231 10 12 12 12 12 12 12 12 12 12 12 12 12 12 130 109 31 18 21 35 131 14 10 9 32 20 26 99 80 22 32 20 <td>Date 23 Apr 39 24 Apr 39 25 Apr 39 12 Aug 39 13 Aug 39 14 Aug 39 15 Aug 39 16 Aug 39 21 Aug 39 22 Aug 39 23 Mar 40 24 Mar 40 25 Mar 40 26 Mar 40 27 Mar 40 28 Mar 40 29 Mar 40 30 Mar 40 30 Mar 41 01 Apr 40 02 Apr 40 03 Mar 41 04 Apr 40 05 Mar 41 05 Mar 41 04 Apr 40 05 Mar 41 <td>aa 93 96 80 88 43 20 9 73 27 15 103 86 27 49 223 244 38 29 102 180 134 67 35 36 55 36 55 36 55 36 55 36 55 36 55 36 55 36 55 36 55 36 59 26 32 39 40 28 19 350 199 42 44 49</td><td>Ap 92 79 61 88 34 9 5 62 20 9 135 89 13 51 190 185 53 205 35 26 40 37 59 42 85 76 26 40 37 59 42 85 76 26 40 37 59 42 85 76 26 40 37 59 42 85 76 26 200 10 230 175 36 300</td><td>Afr 65 89 52 82 26 9 4 36 16 8 74 55 18 33 138 179 37 26 23 76 189 102 53 19 81 15 219 25 211 31 28 390 300 57 48 24 22 22 9 238 112 12 11 25 188 26 300 22 238 300 32 <!--</td--></td></td>	Date 23 Apr 39 24 Apr 39 25 Apr 39 12 Aug 39 13 Aug 39 14 Aug 39 15 Aug 39 16 Aug 39 21 Aug 39 22 Aug 39 23 Mar 40 24 Mar 40 25 Mar 40 26 Mar 40 27 Mar 40 28 Mar 40 29 Mar 40 30 Mar 40 30 Mar 41 01 Apr 40 02 Apr 40 03 Mar 41 04 Apr 40 05 Mar 41 05 Mar 41 04 Apr 40 05 Mar 41 <td>aa 93 96 80 88 43 20 9 73 27 15 103 86 27 49 223 244 38 29 102 180 134 67 35 36 55 36 55 36 55 36 55 36 55 36 55 36 55 36 55 36 55 36 59 26 32 39 40 28 19 350 199 42 44 49</td> <td>Ap 92 79 61 88 34 9 5 62 20 9 135 89 13 51 190 185 53 205 35 26 40 37 59 42 85 76 26 40 37 59 42 85 76 26 40 37 59 42 85 76 26 40 37 59 42 85 76 26 200 10 230 175 36 300</td> <td>Afr 65 89 52 82 26 9 4 36 16 8 74 55 18 33 138 179 37 26 23 76 189 102 53 19 81 15 219 25 211 31 28 390 300 57 48 24 22 22 9 238 112 12 11 25 188 26 300 22 238 300 32 <!--</td--></td>	aa 93 96 80 88 43 20 9 73 27 15 103 86 27 49 223 244 38 29 102 180 134 67 35 36 55 36 55 36 55 36 55 36 55 36 55 36 55 36 55 36 55 36 59 26 32 39 40 28 19 350 199 42 44 49	Ap 92 79 61 88 34 9 5 62 20 9 135 89 13 51 190 185 53 205 35 26 40 37 59 42 85 76 26 40 37 59 42 85 76 26 40 37 59 42 85 76 26 40 37 59 42 85 76 26 200 10 230 175 36 300	Afr 65 89 52 82 26 9 4 36 16 8 74 55 18 33 138 179 37 26 23 76 189 102 53 19 81 15 219 25 211 31 28 390 300 57 48 24 22 22 9 238 112 12 11 25 188 26 300 22 238 300 32 </td

Data Sources
1. Solar-Geophysical Data series (NOAA/EDS) and its predecessors, 1956–1975.
2. International Association for Geomagnetism and Aeronomy (IAGA) Bulletin series.

3. Terrestrial Magnetism and Atmospheric Electricity, Vols. 44, 45, 46.

Date	āa	Ар	Afr	Date	aa	Ар	Afr
19 Oct 42 20 Oct 42 28 Oct 42 29 Oct 42 30 Oct 42 31 Oct 42 30 Oct 42 31 Sep 46 22 Sep 46 23 Sep 46 24 Sep 46 25 Sep 46 26 <td< td=""><td>aa432759854845184134100195523632242951314038117541631272141297105795433854159505757555424491295413134221295870682157575554244912954131342212935925870682157575154244912954131130951591601011637811818441</td><td>$\begin{array}{c} Ap\\ \\ 33\\ 19\\ 56\\ 80\\ 39\\ 30\\ 125\\ 120\\ 115\\ 195\\ 51\\ 30\\ 215\\ 51\\ 30\\ 215\\ 55\\ 35\\ 79\\ 150\\ 34\\ 29\\ 135\\ 58\\ 14\\ 22\\ 200\\ 145\\ 21\\ 57\\ 7\\ 38\\ 91\\ 36\\ 35\\ 40\\ 172\\ 64\\ 58\\ 51\\ 38\\ 34\\ 16\\ 42\\ 156\\ 52\\ 9\\ 9\\ 39\\ 16\\ 18\\ 28\\ 95\\ 69\\ 62\\ 72\\ 48\\ 16\\ 59\\ 86\\ 82\\ 70\\ 135\\ 142\\ 156\\ 52\\ 9\\ 9\\ 39\\ 16\\ 18\\ 28\\ 95\\ 69\\ 62\\ 72\\ 48\\ 16\\ 59\\ 86\\ 82\\ 70\\ 135\\ 142\\ 156\\ 52\\ 9\\ 9\\ 39\\ 16\\ 18\\ 28\\ 95\\ 69\\ 62\\ 72\\ 48\\ 16\\ 59\\ 86\\ 82\\ 70\\ 135\\ 112\\ 160\\ 74\\ 102\\ 135\\ 112\\ 160\\ 74\\ 104\\ 33\\ 3\\ 51\\ 112\\ 160\\ 74\\ 104\\ 164\\ 33\\ 3\\ 164\\ 33\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$</td><td>Afr 30 12 25 76 32 32 32 32 32 332 137 82 89 118 35 23 244 28 95 32 10 17 204 97 17 28 95 32 10 17 204 97 17 28 35 192 48 37 32 38 27 13 27 13 27 10 34 45 73 37 105 44 63 94<td>Date 11 Feb 58 12 Feb 58 08 Jul 58 09 Jul 58 04 Sep 58 05 Sep 58 26 Mar 59 27 Mar 59 15 Jul 59 16 Jul 59 17 Jul 59 16 Aug 59 17 Aug 59 21 Sep 59 21 Sep 59 21 Sep 60 03 Apr 60 04 Sep 60 05 Sep 60 06 Oct 60 07 Oct 60 08 Oct 60 07 Oct 60 025 Oct 60 026 Oct 60 11 Nov 60 12 Nov 60 <</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{r} Ap \\ 199 \\ 59 \\ 200 \\ 75 \\ 131 \\ 71 \\ 81 \\ 178 \\ 236 \\ 47 \\ 110 \\ 119 \\ 130 \\ 114 \\ 86 \\ 82 \\ 68 \\ 129 \\ 241 \\ 174 \\ 128 \\ 95 \\ 118 \\ 203 \\ 186 \\ 33 \\ 186 \\ 33 \\ 186 \\ 33 \\ 186 \\ 33 \\ 188 \\ 203 \\ 188 \\ 33 \\ 188 \\ 203 \\ 188 \\ 33 \\ 188 \\ 203 \\ 188 \\ 233 \\ 241 \\ 126 \\ 78 \\ 18 \\ 20 \\ 13 \\ 82 \\ 38 \\ 33 \\ 43 \\ 15 \\ 26 \\ 13 \\ 44 \\ 126 \\ 78 \\ 18 \\ 60 \\ 27 \\ 34 \\ 48 \\ 19 \\ 82 \\ 23 \\ 22 \\ 15 \\ 92 \\ 112 \\ 13 \\ 11 \\ 130 \\ 146 \\ 20 \\ 55 \\ 45 \\ 42 \\ \end{array}$</td><td>Afr 204 44 178 41 86 52 52 123 225 32 101 80 69 76 44 58 33 69 76 44 58 33 160 77 59 89 115 119 20 43 7 33 14 46 264 35 48 160 77 59 89 115 129 204 44 58 37 225 32 101 80 69 76 44 58 37 119 20 43 7 226 20 123 225 32 101 80 69 76 44 58 37 119 20 43 7 226 20 123 225 32 101 80 69 76 44 58 37 33 14 46 264 35 48 119 20 27 26 20 119 105 74 80 119 105 74 80 112 112 112 116 119 105 74 80 112 112 112 115 112 116 119 105 74 80 115 112 116 119 105 74 80 115 123 119 105 74 80 115 123 119 105 74 80 115 123 116 119 105 74 80 115 125 119 105 74 80 112 112 116 115 135 535 35 35 37 30 162 166 35 35 37 30 162 166 35 35 37 30 162 166 35 35 37 37 30 162 166 35 35 37 37 37 30 162 166 35 37 37 37 37 30 162 166 35 37 37 37 37 37 37 30 162 166 35 37 37 37 37 37 30 162 166 35 37 37 37 37 37 112 115 112 116 156 35 37 37 37 37 37 37 37 37 37 37</td></td></td<>	aa432759854845184134100195523632242951314038117541631272141297105795433854159505757555424491295413134221295870682157575554244912954131342212935925870682157575154244912954131130951591601011637811818441	$\begin{array}{c} Ap\\ \\ 33\\ 19\\ 56\\ 80\\ 39\\ 30\\ 125\\ 120\\ 115\\ 195\\ 51\\ 30\\ 215\\ 51\\ 30\\ 215\\ 55\\ 35\\ 79\\ 150\\ 34\\ 29\\ 135\\ 58\\ 14\\ 22\\ 200\\ 145\\ 21\\ 57\\ 7\\ 38\\ 91\\ 36\\ 35\\ 40\\ 172\\ 64\\ 58\\ 51\\ 38\\ 34\\ 16\\ 42\\ 156\\ 52\\ 9\\ 9\\ 39\\ 16\\ 18\\ 28\\ 95\\ 69\\ 62\\ 72\\ 48\\ 16\\ 59\\ 86\\ 82\\ 70\\ 135\\ 142\\ 156\\ 52\\ 9\\ 9\\ 39\\ 16\\ 18\\ 28\\ 95\\ 69\\ 62\\ 72\\ 48\\ 16\\ 59\\ 86\\ 82\\ 70\\ 135\\ 142\\ 156\\ 52\\ 9\\ 9\\ 39\\ 16\\ 18\\ 28\\ 95\\ 69\\ 62\\ 72\\ 48\\ 16\\ 59\\ 86\\ 82\\ 70\\ 135\\ 112\\ 160\\ 74\\ 102\\ 135\\ 112\\ 160\\ 74\\ 104\\ 33\\ 3\\ 51\\ 112\\ 160\\ 74\\ 104\\ 164\\ 33\\ 3\\ 164\\ 33\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	Afr 30 12 25 76 32 32 32 32 32 332 137 82 89 118 35 23 244 28 95 32 10 17 204 97 17 28 95 32 10 17 204 97 17 28 35 192 48 37 32 38 27 13 27 13 27 10 34 45 73 37 105 44 63 94 <td>Date 11 Feb 58 12 Feb 58 08 Jul 58 09 Jul 58 04 Sep 58 05 Sep 58 26 Mar 59 27 Mar 59 15 Jul 59 16 Jul 59 17 Jul 59 16 Aug 59 17 Aug 59 21 Sep 59 21 Sep 59 21 Sep 60 03 Apr 60 04 Sep 60 05 Sep 60 06 Oct 60 07 Oct 60 08 Oct 60 07 Oct 60 025 Oct 60 026 Oct 60 11 Nov 60 12 Nov 60 <</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{r} Ap \\ 199 \\ 59 \\ 200 \\ 75 \\ 131 \\ 71 \\ 81 \\ 178 \\ 236 \\ 47 \\ 110 \\ 119 \\ 130 \\ 114 \\ 86 \\ 82 \\ 68 \\ 129 \\ 241 \\ 174 \\ 128 \\ 95 \\ 118 \\ 203 \\ 186 \\ 33 \\ 186 \\ 33 \\ 186 \\ 33 \\ 186 \\ 33 \\ 188 \\ 203 \\ 188 \\ 33 \\ 188 \\ 203 \\ 188 \\ 33 \\ 188 \\ 203 \\ 188 \\ 233 \\ 241 \\ 126 \\ 78 \\ 18 \\ 20 \\ 13 \\ 82 \\ 38 \\ 33 \\ 43 \\ 15 \\ 26 \\ 13 \\ 44 \\ 126 \\ 78 \\ 18 \\ 60 \\ 27 \\ 34 \\ 48 \\ 19 \\ 82 \\ 23 \\ 22 \\ 15 \\ 92 \\ 112 \\ 13 \\ 11 \\ 130 \\ 146 \\ 20 \\ 55 \\ 45 \\ 42 \\ \end{array}$</td> <td>Afr 204 44 178 41 86 52 52 123 225 32 101 80 69 76 44 58 33 69 76 44 58 33 160 77 59 89 115 119 20 43 7 33 14 46 264 35 48 160 77 59 89 115 129 204 44 58 37 225 32 101 80 69 76 44 58 37 119 20 43 7 226 20 123 225 32 101 80 69 76 44 58 37 119 20 43 7 226 20 123 225 32 101 80 69 76 44 58 37 33 14 46 264 35 48 119 20 27 26 20 119 105 74 80 119 105 74 80 112 112 112 116 119 105 74 80 112 112 112 115 112 116 119 105 74 80 115 112 116 119 105 74 80 115 123 119 105 74 80 115 123 119 105 74 80 115 123 116 119 105 74 80 115 125 119 105 74 80 112 112 116 115 135 535 35 35 37 30 162 166 35 35 37 30 162 166 35 35 37 30 162 166 35 35 37 37 30 162 166 35 35 37 37 37 30 162 166 35 37 37 37 37 30 162 166 35 37 37 37 37 37 37 30 162 166 35 37 37 37 37 37 30 162 166 35 37 37 37 37 37 112 115 112 116 156 35 37 37 37 37 37 37 37 37 37 37</td>	Date 11 Feb 58 12 Feb 58 08 Jul 58 09 Jul 58 04 Sep 58 05 Sep 58 26 Mar 59 27 Mar 59 15 Jul 59 16 Jul 59 17 Jul 59 16 Aug 59 17 Aug 59 21 Sep 59 21 Sep 59 21 Sep 60 03 Apr 60 04 Sep 60 05 Sep 60 06 Oct 60 07 Oct 60 08 Oct 60 07 Oct 60 025 Oct 60 026 Oct 60 11 Nov 60 12 Nov 60 <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} Ap \\ 199 \\ 59 \\ 200 \\ 75 \\ 131 \\ 71 \\ 81 \\ 178 \\ 236 \\ 47 \\ 110 \\ 119 \\ 130 \\ 114 \\ 86 \\ 82 \\ 68 \\ 129 \\ 241 \\ 174 \\ 128 \\ 95 \\ 118 \\ 203 \\ 186 \\ 33 \\ 186 \\ 33 \\ 186 \\ 33 \\ 186 \\ 33 \\ 188 \\ 203 \\ 188 \\ 33 \\ 188 \\ 203 \\ 188 \\ 33 \\ 188 \\ 203 \\ 188 \\ 233 \\ 241 \\ 126 \\ 78 \\ 18 \\ 20 \\ 13 \\ 82 \\ 38 \\ 33 \\ 43 \\ 15 \\ 26 \\ 13 \\ 44 \\ 126 \\ 78 \\ 18 \\ 60 \\ 27 \\ 34 \\ 48 \\ 19 \\ 82 \\ 23 \\ 22 \\ 15 \\ 92 \\ 112 \\ 13 \\ 11 \\ 130 \\ 146 \\ 20 \\ 55 \\ 45 \\ 42 \\ \end{array}$	Afr 204 44 178 41 86 52 52 123 225 32 101 80 69 76 44 58 33 69 76 44 58 33 160 77 59 89 115 119 20 43 7 33 14 46 264 35 48 160 77 59 89 115 129 204 44 58 37 225 32 101 80 69 76 44 58 37 119 20 43 7 226 20 123 225 32 101 80 69 76 44 58 37 119 20 43 7 226 20 123 225 32 101 80 69 76 44 58 37 33 14 46 264 35 48 119 20 27 26 20 119 105 74 80 119 105 74 80 112 112 112 116 119 105 74 80 112 112 112 115 112 116 119 105 74 80 115 112 116 119 105 74 80 115 123 119 105 74 80 115 123 119 105 74 80 115 123 116 119 105 74 80 115 125 119 105 74 80 112 112 116 115 135 535 35 35 37 30 162 166 35 35 37 30 162 166 35 35 37 30 162 166 35 35 37 37 30 162 166 35 35 37 37 37 30 162 166 35 37 37 37 37 30 162 166 35 37 37 37 37 37 37 30 162 166 35 37 37 37 37 37 30 162 166 35 37 37 37 37 37 112 115 112 116 156 35 37 37 37 37 37 37 37 37 37 37
30 Sep 57	66	56	28	SI May 0/	40	43	34

unironmental ABORATORIE

The mission of the Environmental Research Laboratories (ERL) is to conduct an integrated program of fundamental research, related technology development, and services to improve understanding and prediction of the geophysical environment comprising the oceans and inland waters, the lower and upper atmosphere, the space environment, and the Earth. The following participate in the ERL missions:

- MESA Marine EcoSystems Analysis Program. Plans, directs, and coordinates the regional projects of NOAA and other federal agencies to assess the effect of ocean dumping, municipal and industrial waste discharge, deep ocean mining, and similar activities on marine ecosystems.
- OCSEA Outer Continental Shelf Environmental Assessment Program Office. Plans and directs research studies supporting the assessment of the primary environmental impact of energy development along the outer continental shelf of Alaska; coordinates related research activities of federal, state, and private institutions.
- WM Weather Modification Program Office. Plans, directs, and coordinates research within ERL relating to precipitation enhancement and mitigation of severe storms. Its National Hurricane and Experimental Meteorology Laboratory (NHEML) studies hurricane and tropical cumulus systems to experiment with methods for their beneficial modification and to develop techniques for better forecasting of tropical weather. The Research Facilities Center (RFC) maintains and operates aircraft and aircraft instrumentation for research programs of ERL and other government agencies.
- AOML Atlantic Oceanographic and Meteorological Laboratories. Studies the physical, chemical, and geological characteristics and processes of the ocean waters, the sea floor, and the atmosphere above the ocean.
- PMEL Pacific Marine Environmental Laboratory. Monitors and predicts the physical and biological effects of man's activities on Pacific Coast estuarine, coastal, deep-ocean, and near-shore marine environments.
- GLERL Great Lakes Environmental Research Laboratory. Studies hydrology, waves. currents, lake levels, biological and chemical processes, and lake-air interaction in the Great Lakes and their watersheds; forecasts lake ice conditions.

- GFDL Geophysical Fluid Dynamics Laboratory. Studies the dynamics of geophysical fluid systems (the atmosphere, the hydrosphere, and the cryosphere) through theoretical analysis and numerical simulation using powerful, high-speed digital computers.
- APCL Atmospheric Physics and Chemistry Laboratory. Studies cloud and precipitation physics, chemical and particulate composition of the atmosphere, atmospheric electricity, and atmospheric heat transfer, with focus on developing methods of beneficial weather modification.
- NSSL National Severe Storms Laboratory. Studies severe-storm circulation and dynamics, and develops techniques to detect and predict tornadoes, thunderstorms, and squall lines.
- WPL Wave Propagation Laboratory. Studies the propagation of sound waves and electromagnetic waves at millimeter, infrared, and optical frequencies to develop new methods for remote measuring of the geophysical environment.
- ARL Air Resources Laboratories. Studies the diffusion, transport, and dissipation of atmospheric pollutants; develops methods of predicting and controlling atmospheric pollution; monitors the global physical environment to detect climatic change.
- AL Aeronomy Laboratory. Studies the physical and chemical processes of the stratosphere, ionosphere, and exosphere of the Earth and other planets, and their effect on high-altitude meteorological phenomena.
- SEL Space Environment Laboratory. Studies solar-terrestrial physics (interplanetary, magnetospheric, and ionospheric); develops techniques for forecasting solar disturbances; provides real-time monitoring and forecasting of the space environment.

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration BOULDER, COLORADO 80302